Highly anisotropic and robust excitons in monolayer black phosphorus.

نویسندگان

  • Xiaomu Wang
  • Aaron M Jones
  • Kyle L Seyler
  • Vy Tran
  • Yichen Jia
  • Huan Zhao
  • Han Wang
  • Li Yang
  • Xiaodong Xu
  • Fengnian Xia
چکیده

Semi-metallic graphene and semiconducting monolayer transition-metal dichalcogenides are the most intensively studied two-dimensional materials of recent years. Lately, black phosphorus has emerged as a promising new two-dimensional material due to its widely tunable and direct bandgap, high carrier mobility and remarkable in-plane anisotropic electrical, optical and phonon properties. However, current progress is primarily limited to its thin-film form. Here, we reveal highly anisotropic and strongly bound excitons in monolayer black phosphorus using polarization-resolved photoluminescence measurements at room temperature. We show that, regardless of the excitation laser polarization, the emitted light from the monolayer is linearly polarized along the light effective mass direction and centres around 1.3 eV, a clear signature of emission from highly anisotropic bright excitons. Moreover, photoluminescence excitation spectroscopy suggests a quasiparticle bandgap of 2.2 eV, from which we estimate an exciton binding energy of ∼0.9 eV, consistent with theoretical results based on first principles. The experimental observation of highly anisotropic, bright excitons with large binding energy not only opens avenues for the future explorations of many-electron physics in this unusual two-dimensional material, but also suggests its promising future in optoelectronic devices.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mobility anisotropy in monolayer black phosphorus due to scattering by charged impurities

We explore the charged-impurity-scattering-limited mobility of electrons and holes in monolayer black phosphorus (BP), a highly anisotropic material. Taking full account of the anisotropic electronic structure in effective mass approximation, the zero-temperature momentum relaxation time and the charge carrier mobility are calculated based on the Boltzmann transport equation. For carrier densit...

متن کامل

High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus

Two-dimensional crystals are emerging materials for nanoelectronics. Development of the field requires candidate systems with both a high carrier mobility and, in contrast to graphene, a sufficiently large electronic bandgap. Here we present a detailed theoretical investigation of the atomic and electronic structure of few-layer black phosphorus (BP) to predict its electrical and optical proper...

متن کامل

Anisotropic Particle-Hole Excitations in Black Phosphorus.

We report on the energy- and momentum-resolved optical response of black phosphorus (BP) in its bulk form. Along the armchair direction of the puckered layers, we find a highly dispersive mode that is strongly suppressed in the perpendicular (zigzag) direction. This mode emerges out of the single-particle continuum for finite values of momentum and is therefore interpreted as an exciton. We arg...

متن کامل

Determination of layer-dependent exciton binding energies in few-layer black phosphorus

The attraction between electrons and holes in semiconductors forms excitons, which largely determine the optical properties of the hosting material, and hence the device performance, especially for low-dimensional systems. Mono- and few-layer black phosphorus (BP) are emerging two-dimensional (2D) semiconductors. Despite its fundamental importance and technological interest, experimental invest...

متن کامل

Layer-Tunable Third-Harmonic Generation in Multilayer Black Phosphorus

Black phosphorus has been the subject of growing interest due to its unique band structure that is both layer dependent and anisotropic. While many have studied the linear optical response of black phosphorus, the nonlinear response has remained relatively unexplored. Here we report on the observation of third-harmonic generation in black phosphorus using an ultrafast near-IR laser and measure ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Nature nanotechnology

دوره 10 6  شماره 

صفحات  -

تاریخ انتشار 2015